
React.js

TABLE OF CONTENTS

Preface 1

Introduction 1

React.js Overview 1

A "Hello Word" Component 1

Component Specification 2

Using State And Properties 2

Using Context 4

Using AJAX 5

Component Styling 5

DOM References 6

Validating Properties 6

Custom Validation . 7

The Flux Application Architecture 7

Testing Components 8

React Addons 9

REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

PREFACEPREFACE

Welcome to the dynamic world of React.js, a
cutting-edge JavaScript library that has
revolutionized the landscape of front-end
development. In this cheatsheet, we embark on a
journey into the heart of React.js, exploring its core
principles, capabilities, and the transformative
impact it has had on building interactive and
efficient user interfaces.

INTRODUCTIONINTRODUCTION

This cheatsheet is designed to be a quick reference,
providing concise and essential information about
the fundamental aspects of React.js, a JavaScript
library for building user interfaces. Whether you’re
a beginner getting started with React or an
experienced developer looking for a quick
reference, this cheatsheet is designed to help you
navigate and understand React’s key concepts and
features.

REACT.JS OVERVIEWREACT.JS OVERVIEW

React.js is a popular JavaScript library for building
user interfaces, especially for single-page
applications where the user interacts with the page
without having to reload it. Developed and
maintained by Facebook, React simplifies the
process of building UI components by using a
declarative syntax and a component-based
architecture.

Here are some key concepts and features of React:

• Declarative Syntax: React allows you to
describe how your UI should look at any given
point in time, and it automatically updates and
renders the components when the data
changes. This is in contrast to imperative
programming, where you would specify exactly
how to achieve a task step by step.

• Component-Based Architecture: React
applications are built using components, which
are reusable, self-contained pieces of code that
manage their state and can be composed to
build complex UIs. Components make it easier
to maintain and reason about your code.

• Virtual DOM: React uses a virtual DOM to
improve performance. Instead of updating the
actual DOM every time the state changes, React

creates a virtual representation of the DOM in
memory and updates only the parts that have
changed in batches. This minimizes the number
of direct manipulations to the actual DOM,
resulting in faster rendering.

• Unidirectional Data Flow: React follows a
unidirectional data flow, which means that
data flows in a single direction through the
components. This makes it easier to understand
and debug the application, as data changes are
predictable.

• JSX (JavaScript XML): React uses JSX, a syntax
extension for JavaScript that looks similar to
XML or HTML. JSX allows you to write HTML-
like code in your JavaScript files, making it
more readable and expressive.

• React Router: For building single-page
applications with multiple views, React Router
is commonly used. It enables navigation among
views of different components, managing the
URL, and updating the UI accordingly.

• State and Props: React components can have
state, which represents the data that can
change over time. Components can also receive
data from a parent component through props
(properties), making it easy to pass data down
the component hierarchy.

• Lifecycle Methods: React components have
lifecycle methods that allow you to execute
code at various points in a component’s life,
such as when it is created, updated, or
destroyed. This provides hooks for performing
actions at specific times in the component’s
lifecycle.

When working with React, you’ll need to install
Node.js and you will typically use a React-powered
tool like Create React App or framework like,
Next.js, Remix, Gatsby or Expo to set up your
project and then build your components to create a
dynamic and interactive user interface.
Frameworks provide features that most apps and
sites eventually need, including routing, data
fetching, and generating HTML. The combination of
these features makes React a powerful and efficient
library for building modern web applications.

A "HELLO WORD" COMPONENTA "HELLO WORD" COMPONENT

Below is an example of a component that renders a
message customizable based on input data.

1 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://nodejs.org/en/
https://create-react-app.dev/
https://nextjs.org/
https://remix.run/
https://www.gatsbyjs.com/
https://expo.dev/
https://www.javacodegeeks.com/minibook

import React from 'react';

// Functional component
const HelloWorld = (props) => {
 return (
 <div>
 <p>{props.message}</p>
 </div>
);
};

// Example usage
const App = () => {
 return (
 <div>
 <h1>Greetings</h1>
 <HelloWorld message="Hello,
World!" />
 </div>
);
};

export default App;

In this example:

• The HelloWorld component is a functional
component that takes a message prop. It returns
JSX, which represents the structure of the UI. It
extracts the message prop using destructuring
and displays it inside an <p> element, wrapped
in a <div>.

• The App component renders the HelloWorld
component and passes the prop with the
message "Hello, World!".

COMPONENT SPECIFICATIONCOMPONENT SPECIFICATION

Below is a table outlining the React functional
component specification.

Read/write Fields Description

props Object containing the
properties passed to the
component.

state Object representing the
internal state of the
component.

Read/write Fields Description

setState Function used to update
the component’s state.

Component Api Description

useState Hook that allows
functional components
to have local state.

useEffect Hook for handling side
effects in functional
components. It is also
used to implement
component lifecycle
related functionality.

useContext Hook that allows
functional components
to subscribe to context
changes.

useReducer Hook for managing
complex state logic in
functional components.

useCallback Memoizes a callback
function to prevent
unnecessary re-renders.

useMemo Memoizes the result of a
computation to optimize
performance.

useRef Creates a mutable object
that persists across
renders.

These are fundamental aspects of a functional
component in React. Keep in mind that the
component API and available hooks may evolve as
React is updated, so always refer to the official
React documentation for the latest information.

USING STATE AND PROPERTIESUSING STATE AND PROPERTIES

Understanding when to use state and props is
crucial for designing React components effectively.
State is more suitable for managing internal
component data that can change, while props are
used for passing data between components in a
controlled and unidirectional manner. Below is a
table describing the differences between state and
props in React, along with guidance on when to use
each.

2 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://react.dev/reference/react/Component
https://react.dev/reference/react/Component
https://www.javacodegeeks.com/minibook

Aspect State Props

Definition Internal data
managed by a
component.

External data
passed to a
component.

Mutability Can be changed
using setState
method.

Immutable;
cannot be
changed by the
component.

Initialization Defined within
the component
using useState.

Received from a
parent
component.

Scope Local to the
component
where it is
defined.

Received from a
parent
component; can
be accessed by
child
components.

Change
Trigger

Changes are
triggered by
events or async
operations
within the
component.

Changes are
triggered by a
parent
component
updating the
prop.

Purpose Represents data
that can change
over time
within the
component.

Provides a way
for a parent
component to
pass data down
to its children.

Immutability
Principle

Follows the
principle of
immutability;
should not be
modified
directly.

Immutable;
should not be
modified by the
receiving
component.

Ownership Owned and
managed by the
component
itself.

Owned by the
parent
component and
passed down.

Use State When:

• Managing and representing internal state
within a component.

• Needing to trigger re-renders based on events
or asynchronous operations within the
component.

• Handling data that is expected to change
during the component’s lifecycle e.g., tracking

user interactions form input.

Use Props When:

• Passing data from a parent component to a
child component.

• Configuring child components with data
received from a parent.

• Establishing communication between
components in a React application.

Let’s update the "Hello World" example to include
both props (external data) and state (internal data),
as well as functions to alter the state. In the
following example, we’ll use the useState hook to
manage the component’s internal state.

import React, { useState } from
'react';

const HelloWorld = (props) => {
 // State for the internal message
 const [internalMessage,
setInternalMessage] = useState(
'Default Internal Message');

 // Function to update the internal
message
 const updateInternalMessage = ()
=> {
 setInternalMessage('New Internal
Message');
 };

 return (
 <div>
 <p>External Message (from
props): {props.message}</p>
 <p>Internal Message (from
state): {internalMessage}</p>
 <button onClick=
{updateInternalMessage}>Update
Internal Message</button>
 </div>
);
};

const App = () => {
 return (

3 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 <div>
 <h1>Greetings</h1>
 <HelloWorld message="Hello,
World!" />
 </div>
);
};

export default App;

In this updated example:

• The HelloWorld component now has an internal
state called internalMessage managed by the
useState hook.

• The updateInternalMessage function modifies
the internal state using the setInternalMessage
function, and it is triggered by a button click.

• The external message is still passed as a prop to
the HelloWorld component.

USING CONTEXTUSING CONTEXT

Context in React is a feature that allows you to
share data such as themes, user authentication
status, language preferences or any other global
state across components in a tree without explicitly
passing props at every level. Context is often used
to avoid "prop drilling," where you pass props
down multiple levels of nested components.

How to Use Context:

• Create a Context: Use createContext() to
create a context object.

• Provide a Context Value: Use a Provider
component to specify the value you want to
share.

• Consume the Context: Use the useContext hook
or the Consumer component to access the context
value in consuming components.

Let’s modify the above example to include a context
that provides a theme, in addition to using props
and state.

import React, { useState,
createContext, useContext } from
'react';

// Create a context with a default
theme
const ThemeContext = createContext(
'light');

const HelloWorld = (props) => {
 const [internalMessage,
setInternalMessage] = useState(
'Default Internal Message');

 const updateInternalMessage = ()
=> {
 setInternalMessage('New Internal
Message');
 };

 // Use context to get the current
theme
 const theme = useContext
(ThemeContext);

 return (
 <div style={{ background: theme
=== 'dark' ? '#333' : '#fff', color:
theme === 'dark' ? '#fff' : '#333'
}}>
 <p>External Message (from
props): {props.message}</p>
 <p>Internal Message (from
state): {internalMessage}</p>
 <p>Theme (from context):
{theme}</p>
 <button onClick=
{updateInternalMessage}>Update
Internal Message</button>
 </div>
);
};

const App = () => {
 // Use ThemeContext.Provider to
set the theme for the entire app
 return (
 <ThemeContext.Provider value=
"dark">
 <div>

<h1>Greetings</h1>
<HelloWorld message="Hello,

4 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

World!" />
 </div>
 </ThemeContext.Provider>
);
};

export default App;

In this example:

• We’ve created a ThemeContext using
createContext('light'), providing a default
theme of 'light'.

• The ThemeContext.Provider in the App
component sets the theme to 'dark' for the
entire app.

• The useContext(ThemeContext) hook in the
HelloWorld component allows us to access the
current theme from the context.

• The component’s styling is adjusted based on
the theme.

USING AJAXUSING AJAX

In React, you can make AJAX (Asynchronous
JavaScript and XML) requests using various
techniques. One common approach is to use the
fetch function or third-party libraries like Axios,
jQuery or Zepto. Let’s see an example.

import React, { useState, useEffect
} from 'react';

const MyComponent = () => {
 const [data, setData] = useState
(null);
 const [error, setError] =
useState(null);

 useEffect(() => {
 const fetchData = async () => {
 try {

const response = await
fetch('https://api.example.com/data'
);

const result = await
response.json();

setData(result);

 } catch (error) {
setError(error);

 }
 };

 fetchData();
 }, []); // Empty dependency array
means the effect runs once after the
initial render

 return (
 <div>
 {data && (

<div>
<h1>Data Loaded:</h1>
<pre>{JSON.stringify(data,

null, 2)}</pre>
</div>

)}
 {error && <p>Error: {error
.message}</p>}
 </div>
);
};

export default MyComponent;

In this example:

• The fetchData function is an asynchronous
function that makes the API request using the
fetch function.

• The useEffect hook is used to trigger the data
fetching when the component mounts.

• The fetched data is stored in the component’s
state using the setData function.

• Error handling is done using the try/catch
block, and errors are stored in the component’s
state using the setError function.

COMPONENT STYLINGCOMPONENT STYLING

In React, you can apply styles to components using
a variety of methods. The two most popular ones
are using inline styles or using CSS modules. Lets
see an example of using both methods at the same
time.

5 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://axios-http.com/
https://jquery.com/
https://zeptojs.com/
https://www.javacodegeeks.com/minibook

// styles.module.css
.container {
 color: red;
 font-size: 12px;
 // ... other CSS properties
}

import React from 'react';
import styles from
'./styles.module.css';

const MyComponent = () => {
 const mystyle = {
 color: 'blue',
 border: '1px solid black',
 // ... other CSS properties
 };

 return (
 <div style={mystyle}>
 <p className={styles.
container}>Hello, Styling!</p>
 </div>
);
};

export default MyComponent;

DOM REFERENCESDOM REFERENCES

In React, accessing DOM elements directly is
generally avoided, and the preferred approach is to
use React’s virtual DOM and state to manage
component rendering. However, there are
situations where you may need to interact with the
actual DOM, such as focusing an input field,
measuring an element, or integrating with third-
party libraries that require direct DOM access.

React provides a feature called refs that can be used
to get a reference to a DOM element. Refs are
created using the useRef hook method.

import React, { useRef, useEffect }
from 'react';

const MyComponent = () => {
 const myInputRef = useRef(null);

 useEffect(() => {
 // Access the DOM element using
current property of the ref
 myInputRef.current.focus();
 }, []); // Empty dependency array
means the effect runs once after the
initial render

 return <input ref={myInputRef} />;
};

In the example above, we set focus on the input
field right after its initial render.

VALIDATING PROPERTIESVALIDATING PROPERTIES

In React, you can validate the props that a
component receives using PropTypes. PropTypes is a
built-in type-checking feature that helps you catch
common bugs by ensuring that components receive
the correct types of props. React will issue warnings
to the console if the passed props do not match the
specified types. Below is an example of how you
can use PropTypes for prop validation.

import PropTypes from 'prop-types';

const MyComponent = ({ name, age,
isStudent }) => {
 // Component logic
};

MyComponent.propTypes = {
 name: PropTypes.string.isRequired,
// String is required
 age: PropTypes.number,
// Number is optional
 isStudent: PropTypes.bool
.isRequired, // Boolean is required
};

MyComponent.defaultProps = {
 age: 25,
};

Here are some common PropTypes:

6 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

• PropTypes.string: A string.

• PropTypes.number: A number.

• PropTypes.bool: A boolean.

• PropTypes.array: An array.

• PropTypes.object: An object.

• PropTypes.func: A function.

• PropTypes.node: A React node (e.g., string or
ReactElement).

• PropTypes.element: A React element.

• PropTypes.instanceOf(MyClass): An instance of a
particular class.

• PropTypes.oneOf(['value1', 'value2']): A value
from a specified set.

• PropTypes.oneOfType([PropTypes.string,
PropTypes.number]): One of a specified type.

• PropTypes.arrayOf(PropTypes.number): An array
of a certain type.

• PropTypes.objectOf(PropTypes.string): An
object with values of a certain type.

• PropTypes.shape({ name: PropTypes.string,
age: PropTypes.number }): An object with
specific properties.

Using .isRequired ensures that the prop is passed
and is of the specified type.

PropTypes are a powerful tool for catching potential
issues early in development and providing clear
documentation for your components. They are
particularly helpful when working on larger
projects or collaborating with a team.

CUSTOM VALIDATION

Custom prop validation in React allows you to
define your own rules for prop validation beyond
the standard data types provided by PropTypes. You
can create custom validation functions and use
them to check the values of your props.

import PropTypes from 'prop-types';

// Define a function that checks
whether the prop meets your custom
validation criteria.
// The function should return null

if the prop is valid, and a Error
object if the prop is invalid.
const isValidEmail = (props,
propName, componentName) => {
 const value = props[propName];

 if (!value || typeof value !==
'string' || !value.includes('@')) {
 return new Error(`Invalid email
prop in ${componentName}.`);
 }

 return null;
};

const MyComponent = ({ name, email
}) => {
 // Component logic

};

// Combine your custom validation
with standard PropTypes checks of
your component.
MyComponent.propTypes = {
 name: PropTypes.string.isRequired,
// Standard PropTypes check
 email: isValidEmail,
// Custom validation check
};

THE FLUX APPLICATION
ARCHITECTURE

THE FLUX APPLICATION
ARCHITECTURE

Flux is an application architecture developed by
Facebook for building client-side web applications.
It complements the React library but can be used
with other libraries or frameworks as well. Flux is
not a library or a framework but rather a set of
design principles that guide how data flows through
an application. The primary goal of Flux is to
provide a unidirectional data flow, making it easier
to reason about and manage the state of a complex
application.

The key components of the Flux architecture
include:

7 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

• Actions: Actions represent events or user
interactions that trigger changes in the
application state. They are simple objects
containing a type property that describes the
action, and optionally, a payload with
additional data.

• Dispatcher: The Dispatcher is responsible for
distributing actions to registered stores. It is a
central hub that manages the flow of data
within the application. When an action is
dispatched, the Dispatcher notifies all
registered stores about the action. In other
words it is essentially an event system and
there can be only one global dispatcher.

• Stores: Stores contain the application state and
logic for handling actions. They respond to
actions by updating their state and emitting
change events. Each store is responsible for a
specific domain or part of the application state.
A Store is a singleton and its the only entity in
the application that is aware of how to update
data.

• Views (React Components): Views are React
components that display the application’s user
interface. They subscribe to changes in the
stores and update their presentation
accordingly. Views can trigger actions based on
user interactions.

• Action Creators: Action Creators are utility
functions that encapsulate the logic for creating
actions. They are responsible for defining the
different types of actions that can occur in the
application.

The data flow in Flux follows a unidirectional cycle:

• Action Creation: A user interacts with the
application, triggering the creation of an action
by an Action Creator.

• Dispatch: The Action is dispatched to the
Dispatcher, which forwards it to all registered
stores.

• Store Update: Stores receive the action and
update their state based on the action type.
They emit a change event to notify the views.

• View Update: Views (React components)
receive the change event and update their
presentation based on the new state from the
stores.

• User Interaction: The cycle repeats when the

user interacts with the updated views, creating
new actions and continuing the unidirectional
flow.

This architecture helps to maintain a clear and
predictable flow of data in the application, making
it easier to understand and debug. It’s important to
note that Flux is a set of design principles, and there
are various implementations and variations of Flux
in the wild, including popular libraries like Redux.

TESTING COMPONENTSTESTING COMPONENTS

Testing React components can be done using testing
libraries such as Jest and React Testing Library.
Let’s create a simple example of testing the "Hello
World" component using these libraries.

Firstly, you’ll need to install the necessary packages
by running the following command:

npm install --save-dev jest @testing-
library/react @testing-library/jest-dom

Now, let’s create a test file for our "Hello World"
component.

import React from 'react';
import { render, screen, fireEvent }
from '@testing-library/react';
import '@testing-library/jest-
dom/extend-expect'; // for
additional matchers

import HelloWorld from '
./HelloWorld'; // Assuming your
component is in HelloWorld.js

describe('HelloWorld Component', ()
=> {
 test('renders the component with
the provided props', () => {
 const { container } = render(
<HelloWorld message="Testing Hello
World" />);

 // Check if the component
renders correctly
 expect(container.firstChild
).toMatchSnapshot();

8 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://jestjs.io/
https://github.com/testing-library/react-testing-library
https://www.javacodegeeks.com/minibook

 // Check if the rendered text
matches the provided message
 expect(screen.getByText('Testing
Hello World')).toBeInTheDocument();
 });

 test('updates internal message on
button click', () => {
 render(<HelloWorld message=
"Initial Message" />);

 // Check if the initial message
is rendered
 expect(screen.getByText('Initial
Message')).toBeInTheDocument();

 // Trigger the button click to
update the internal message
 fireEvent.click(screen.
getByText('Update Internal Message
'));

 // Check if the internal message
is updated after the button click
 expect(screen.getByText('New
Internal Message'
)).toBeInTheDocument();
 });
});

This test file includes two tests:

• renders the component with the provided
props:

◦ Checks if the component renders correctly
with the provided prop.

◦ Verifies if the rendered text matches the
provided message.

• updates internal message on button click:

◦ Checks if the initial message is rendered.

◦ Simulates a button click to update the
internal message.

◦ Verifies if the internal message is updated
after the button click.

To run the tests, add the following script to your
package.json:

"scripts": {
 "test": "jest"
}

Then, run the tests by issuing the npm test
command.

REACT ADDONSREACT ADDONS

The table below provides an introduction to some
popular React addons. These addons enhance and
extend the capabilities of React applications,
covering areas such as routing, state management,
styling, animations, testing, and more. Keep in mind
that the React ecosystem evolves, and new addons
may emerge, so it’s always a good idea to check the
official documentation for the latest information.

Addon Description

React Router A complete routing
solution for React
applications. Allows for
navigation between
views in a React app.

Redux A state management
library for managing the
state of a React
application in a
predictable way.

React-Redux Official bindings for
using Redux with React.
Provides the connect
function to connect
components to the
Redux store.

Redux Thunk Middleware for Redux
that allows you to write
asynchronous logic in
your Redux actions.

Styled-components A CSS-in-JS library for
styling React
components. Allows you
to write actual CSS in
your JavaScript files.

9 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://reactrouter.com/en/main
https://redux.js.org/
https://react-redux.js.org/
https://github.com/reduxjs/redux-thunk
https://styled-components.com/
https://www.javacodegeeks.com/minibook

Addon Description

React Helmet A library for managing
the document head in
React applications.
Useful for updating
meta tags and titles
dynamically.

React-Query A library for managing,
caching, and updating
remote data in React
applications.

Formik A form management
library for React. Makes
it easy to handle form
state, validation, and
submission.

Yup A JavaScript schema
builder for value
parsing and validation.
Often used with Formik
for form validation.

React Spring A spring-physics-based
animation library for
React. Enables smooth
and natural animations
in React components.

Enzyme A JavaScript testing
utility for React that
makes it easy to test
React components'
output and behavior.

React DevTools A browser extension
that allows you to
inspect and debug React
component hierarchies
in your application.

10 REACT.JS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written permission of the publisher.

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code
and more.

CHEATSHEET FEEDBACK
WELCOME

support@javacodegeeks.com

SPONSORSHIP
OPPORTUNITIES

sales@javacodegeeks.com

https://github.com/nfl/react-helmet
https://tanstack.com/query/latest/
https://formik.org/
https://github.com/jquense/yup
https://www.react-spring.dev/
https://airbnb.io/projects/enzyme/
https://react.dev/learn/react-developer-tools
https://www.javacodegeeks.com/minibook

	Reactjs
	Table of Contents
	Preface
	Introduction
	React.js Overview
	A "Hello Word" Component
	Component Specification
	Using State And Properties
	Using Context
	Using AJAX
	Component Styling
	DOM References
	Validating Properties
	Custom Validation

	The Flux Application Architecture
	Testing Components
	React Addons
	cheatsheet ending.pdf
	Design Patterns Cheatsheet
	Table of Contents
	Preface
	About the Author
	1. Introduction
	2. Creational patterns
	2.1. Singleton
	2.2. Factory
	2.3. Abstract Factory
	2.4. Builder
	2.5. Prototype

	3. Structural patterns
	3.1. Adapter
	3.2. Bridge
	3.3. Composite
	3.4. Decorator
	3.5. Facade
	3.6. Flyweight
	3.7. Proxy

	4. Behavioral patterns
	4.1. Chain of Responsibility
	4.2. Command
	4.3. Iterator
	4.4. Mediator
	4.5. Observer
	4.6. Strategy
	4.7. Template Method

